ENGINEERING MECHANICS

Course Code	19ME3301	Year	II	Semester	I	
Course Category	Program Core	Branch	ME	Course Type	Theory	
Credits	3	L-T-P	2-1-0	Prerequisites	Engineering Mathematics	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100	

Course Outcomes				
After	successful completion of the course, the student will be able to			
CO1	Determine the resultant force, moment and static equilibrium of a rigid body subjected to a force system.	L3		
CO2	Analyze planar force systems to determine the forces in the members of trusses and solve friction related problems.	L4		
CO3	Determine centroids and moment of inertia for simple and composite areas	L3		
CO4	Apply kinematic principles to the rigid bodies under translation and rotation motion.	L3		
CO5	Determine the motion parameters for a body subjected to a given force system.	L3		

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2							1		2	3	1
CO2	3	3	2							1		2	3	1
CO3	3	3	2							1		2	3	1
CO4	3	3	2							1		2	3	1
CO5	3	3	2							1		2	3	1

	Syllabus					
Unit No.	Contents	Mapped COs				
I	INTRODUCTION: Significance of Engineering Mechanics, Composition and resolution of forces, parallelogram law, principle of transmissibility, types of force systems - concurrent and non-concurrent, coplanar forces, resultant of coplanar force systems, couple, moment of a	CO1				
	force, Varignon's theorem, concept of free body diagrams, concept of equilibrium of coplanar force systems.					
П	FRICTION: Laws of friction, types of friction, equilibrium of force systems involving frictional forces, ladder and wedge friction ANALYSIS OF STRUCTURES: Introduction to plane trusses, Types of trusses, Assumptions in analysis of truss, analysis of plane trusses by method of joints.	CO2				
Ш	CENTROID: Centroid and centre of gravity, derivation of centroids of rectangle, triangle, circle, semi-circle from first principles, centroid of composite areas.					

Department of Mechanical Engineering

PVP 19

	MOMENT OF INERTIA: Area moment of inertia of plane and composite figures, parallel axis theorem, perpendicular axis theorem, polar moment of inertia.	
IV	KINEMATICS: Equations of motion for rigid bodies under constant and variable acceleration, rectilinear and curvilinear motion, Rotation of a rigid body about a fixed axis- Rotation under the action of constant moment.	CO4
V	KINETICS: Principles of dynamics - Newton's Laws of motion, D'Alembert's principle in rectilinear translation, principle of work and energy. IDEAL SYSTEMS: Principle of conservation of energy, conservation of linear momentum, principle of momentum and impulse, impact — Direct central impact	CO5

Learning Recourse(s)

Text Book(s)

- 1. S. Timoshenko, D.H. Young, J.V. Rao, Sukumar Pati, Engineering Mechanics (in SI units), 5/e, McGraw Hill, 2013.
- 2. Engineering Mechanics Statics and dynamics, by A.K.Tayal, Umesh Publication, Delhi, 14e, 2010.

Reference Book(s)

- 1. Irving Shames, G.K.M. Rao, Engineering Mechanics: Statics and Dynam-ics, 4/e, Pearson, 2009.
- 2. K.L. Kumar, Veenu Kumar, Engineering Mechanics, 4/e, Tata McGraw Hill, 2010.
- 3. N.H. Dubey, Engineering Mechanics: Statics and Dynamics, TataMcGrawHill, 2014

e-Resources & other digital material

- 1. https://nptel.ac.in/courses/112/103/112103108/
- 2. https://www.coursera.org/learn/engineering-mechanics-statics